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Background: kNN Augmentation RQ1: Is the performance gap caused by

the softmax bottleneck?
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Without extra data, kNN augmentation can improve the LM &
. g k Thus, the softmax bottleneck is not the cause of the performance gap.

RQ2: Is the performance gap caused by underfitting?
I

RQ3: Any alternatives to kNN augmentation?

Previous Hypothesis (Xu et al., 2023):
KNN-LM performs better because it memorizes the training data better.

Our hypothesis:
The LM training objective has limitations and can’t handle some cases.
For example, we identify the over-specification scenario.

We propose MLP-augmentation:
Instead of using the key-value pairs in the datastore to build

| | a kNN model, we use the pairs to train an MLP model.
Definition] Over-specification:

The prefix of a partial sentence contains information that is not causally Results:
relevant to its continuation. 25
[Proposed Dataset]: Macondo >20
Training set: [villager], who [desc], is the parent of [child]. 13 15
Test set: [villager], is the parent of [child]. =10
For example, This part is not causally relevant to the continuation. 5 I
“Fifine Lottman,|who used to work for Fox Broadcasting Company, 0
is the parent of Hayward.” Macondo WikiText
LMs trained with the above sentence may struggle to complete the LM KNN-LM B MLP-1 M

following sentence
“Fifine Lottman is the parent of

V4

Compared with a kNN datastore, an extra MLP layer
requires only 4% of the storage space.

Fine-tuning with Macondo

20.168 e Augmenting with MLP may be a promising future direction.
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_ promising future direction.
consistently outperforms

the vanilla LM (solid lines).

The LM training objective has limitations
and kNN augmentation can somewhat mitigate it.
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