The Distributional Hypothesis Does Not Fully Explain the Benefits of Masked Language Model Pretraining

Ting-Rui Chiang, Dani Yogatama University of Southern California {tingruic,yogatama}@usc.edu

The Distributional Hypothesis

Words that occur in the same contexts tend to have similar meanings (Harris, 1954)

• i.e. words semantically similar have similar distribution of neighbor words

$$P(x_{l}, x_{2}, ..., x_{n} | \text{``delicious''}) = P(x_{l}, x_{2}, ..., x_{n} | \text{``tasty''})$$
(the distributional property)

Historically

- It has been used to explain the efficacy of word embedding training.
- and also [1]

[1] Masked Language Modeling and the Distributional Hypothesis: Order Word Matters Pre-training for Little

The distributional property encodes semantics

It connects semantics to data distribution:

"delicious" = "tasty"

$$P(x_1, x_2, ..., x_n | \text{``delicious''}) = P(x_1, x_2, ..., x_n | \text{``tasty''})$$

The distributional property infuses semantic relationships in the pretrained model.

Theoretically

Knowledge about semantic relationships improves

- sample efficiency
- generalization capability

It's nice but...

- It assumes we use pretrained models as static models.
 (and so do many existing probing works)
- Does the distributional property really help the fine-tuning

□Validating with Synthetic Data

Experimental Design

Hypothesis: the distributional property in the pretraining data

- 1. improves the sample efficiency of downstream tasks
- 2. helps fine-tuned models generalize better
- ➤ The experimental variable we want to manipulate.

With this pseudo language:

Results

- Sample efficiency: yes
- Generalization capability: no

Experimenting with Real-world Data

Premise of the Experiment (informal)

If the distributional hypothesis is the explanation, then whether a fine-tuned model f generalizes, e.g. knowing f("It is delicious") = f("It tastes good"), (1)

should be related to whether the pretrained model f_{θ} models this distributional property well

$$f_{\theta}(x_1, x_2, ..., x_n \mid \text{``is delicious''}) = f_{\theta}(x_1, x_2, ..., x_n \mid \text{``tastes good''}).$$
 (2)

Inspecting the correlation between whether (1) and (2) are true.

Experimental Design

paraphrase feature $1 \rightarrow$ feature 2

is delicious \rightarrow tastes good tastes bad \rightarrow distasteful

fine-tuned model f

pretrained model f_0 e.g. bert-based-uncased **D**[f(y | "It is delicious") || <math>f(y | "It tastes good")] **correlation D**[$f_{\theta}([mask] | "is delicious") || <math>f_{\theta}([mask] | "tastes good")$] Inferring the semantic relationship in an MLM - word & phrase

 $f_{\theta}(\operatorname{ctx} | feature 1) = f_{\theta}(\operatorname{ctx} | feature 2)$

For words and phrases: query with POS-dependent templates

{NP} [MASK][MASK] {VP}e.g. a running car [MASK]e.g. [MASK] is chased by a dog.

[MASK] is {ADJP} e.g. [MASK] *is well-made and lovely*.

This should be a natural way to query the relationship from an MLM

SST2

MNLI

Conclusion

- The distributional property contributes to better sample efficiency.
- But it doesn't explain the generalization capability.

