The Distributional Hypothesis Does Not Fully Explain the Benefits of Masked Language Model Pretraining

Ting-Rui Chiang, Dani Yogatama
University of Southern California
{tingruic,yogatama}@usc.edu
The Distributional Hypothesis

Words that occur in the same contexts tend to have similar meanings (Harris, 1954)

- i.e. words semantically similar have similar distribution of neighbor words

\[P(x_1, x_2, \ldots, x_n \mid \text{“delicious”}) = P(x_1, x_2, \ldots, x_n \mid \text{“tasty”}) \]

(The distributional property)

Historically

- It has been used to explain the efficacy of word embedding training.
- and also [1]

The distributional property encodes semantics

It connects semantics to data distribution:

“delicious” = “tasty”

\[
P(x_1, x_2, \ldots, x_n \mid \text{“delicious”}) = P(x_1, x_2, \ldots, x_n \mid \text{“tasty”})
\]
Theoretically

Knowledge about semantic relationships improves

- sample efficiency
- generalization capability
It’s nice but...

- It assumes we use pretrained models as static models. (and so do many existing probing works)
- Does the distributional property really help the fine-tuning process? 😕
Validating with Synthetic Data
Experimental Design

Hypothesis: the distributional property in the pretraining data

1. improves the sample efficiency of downstream tasks
2. helps fine-tuned models generalize better

The experimental variable we want to manipulate.

With this pseudo language:

- dataset \textit{w/l} the property → pretrained with MLM → fine-tuned & test
- dataset \textit{w/o} the property → pretrained with MLM → fine-tuned & test
Results

- Sample efficiency: yes
- Generalization capability: no
Experimenting with Real-world Data
Premise of the Experiment (informal)

If the distributional hypothesis is the explanation, then whether a fine-tuned model f generalizes, e.g. knowing

$$f(\text{“It is delicious”}) = f(\text{“It tastes good”}), \quad (1)$$

should be related to whether the pretrained model f_0 models this distributional property well

$$f_0(x_1, x_2, \ldots, x_n \mid \text{“is delicious”}) = f_0(x_1, x_2, \ldots, x_n \mid \text{“tastes good”}). \quad (2)$$

Inspecting the correlation between whether (1) and (2) are true.
Experimental Design

paraphrase

feature 1 → feature 2

- is delicious → tastes good
- tastes bad → distasteful

pretrained model f_0

e.g. bert-based-uncased

- $D[f(y | “It is delicious”) | [mask] | “is delicious”) || f(y | “It tastes good”)]$

fine-tuned model f

- $D[f(y | “It is delicious”) | [mask] | “is delicious”) || f(y | “It tastes good”)]$
Inferring the semantic relationship in an MLM - word & phrase

\[f_0(\text{ctx} \mid \text{feature 1}) = f_0(\text{ctx} \mid \text{feature 2}) \]

For words and phrases: query with POS-dependent templates

{NP} [MASK]
e.g. a running car [MASK]

[MASK] {VP}
e.g. [MASK] is chased by a dog.

[MASK] is {ADJP}
e.g. [MASK] is well-made and lovely.

This should be a natural way to query the relationship from an MLM
MNLI

SST2
Conclusion

- The distributional property contributes to better sample efficiency.
- But it doesn’t explain the generalization capability.