Breaking Down Multilingual Machine Translation

Ting-Rui Chiang¹ Yi-Pei Chen² Yi-Ting Yeh¹ Graham Neubig¹ Carnegie Mellon University¹, The University of Tokyo²
Background: Multilingual Training for Machine Translation

encoder	decoder
Belarusian | Arabic | German | Azerbaijani | English

Many-to-one

↑ has more improvement than ↓

encoder	decoder
English | Azerbaijani | Belarusian | Arabic | German

We were wondering why?
Observation

- Azerbaijani
 - Belarusian
 - Arabic
 - German

encoder \rightarrow \text{decoder} \rightarrow \text{English}

- many-to-one

affects the number of modalities exposed to the encoder/decoder

- English
 - encoder \rightarrow \text{decoder}

- one-to-many

- Azerbaijani
 - Belarusian
 - Arabic
 - German
Investigation

- How does multilingual training affect the encoder/decoder?
 - i.e. How useful are the parameters learned from multilingual training?
Experiment - Step 1: Train a Multilingual Model

encoder

decoder

parameters

Azerbaijani
Belarusian
Arabic
German

train

Azerbaijani
Belarusian
Arabic
German
Experiment - Step 2: Initialize Several Bilingual Models

- Encoder
- Decoder

parameters

English → Encoder → Decoder → Arabic

English → Encoder → Decoder → Arabic

English → Encoder → Decoder → Arabic

English → Encoder → Decoder → Arabic
Experiment - Step 2: Initialize Several Bilingual Models

Load both encoder and decoder parameters.
Experiment - Step 2: Initialize Several Bilingual Models

Load both

Load encoder
Experiment - Step 2: Initialize Several Bilingual Models

Load both parameters

Load encoder parameters

Load decoder parameters
Experiment - Step 2: Initialize Several Bilingual Models

- **Load both**
 - English
 - Encoder
 - Decoder
 - Arabic

- **Load encoder**
 - English
 - Encoder
 - Decoder
 - Arabic

- **Load decoder**
 - English
 - Encoder
 - Decoder
 - Arabic

- **From scratch**
 - English
 - Encoder
 - Decoder
 - Arabic
Experiment - Step 3: Train with Bilingual Data

- Load both
- Load encoder
- Load decoder
- From scratch
Experiment - Final Step: Compare their performance

We can infer how multilingual training benefits the encoder/decoder.
Low-resource: Multilingual training benefits both the encoder and the decoder.
High-resource: Multilingual training only benefits encoder.
Investigating Parameter Sharing

1. Identify important attention heads for languages.
2. Compute the coherence of important heads.
Investigating Parameter Sharing
Improvement by Training with Related Languages

<table>
<thead>
<tr>
<th>Model</th>
<th>az</th>
<th>be</th>
<th>gl</th>
<th>sk</th>
<th>ar</th>
<th>de</th>
<th>he</th>
<th>it</th>
</tr>
</thead>
<tbody>
<tr>
<td>En-All (Aharoni et al., 2019)</td>
<td>5.1</td>
<td>10.7</td>
<td>26.6</td>
<td>24.5</td>
<td>16.7</td>
<td>30.5</td>
<td>27.6</td>
<td>35.9</td>
</tr>
<tr>
<td>Bilingual Baseline</td>
<td>1.3</td>
<td>1.9</td>
<td>3.9</td>
<td>13.1</td>
<td>15.6</td>
<td>27.1</td>
<td>25.4</td>
<td>32.0</td>
</tr>
<tr>
<td>All-All</td>
<td>3.1</td>
<td>6.2</td>
<td>20.5</td>
<td>18.4</td>
<td>12.7</td>
<td>24.5</td>
<td>21.1</td>
<td>30.5</td>
</tr>
<tr>
<td>All-All w/ f.t. on related clusters</td>
<td>7.9</td>
<td>12.8</td>
<td>27.5</td>
<td>24.9</td>
<td>-</td>
<td>30.2</td>
<td>27.0</td>
<td>35.4</td>
</tr>
<tr>
<td>All-All w/ f.t. on random groups</td>
<td>6.9</td>
<td>13.3</td>
<td>22.5</td>
<td>24.3</td>
<td>-</td>
<td>-</td>
<td>27.5</td>
<td>35.2</td>
</tr>
<tr>
<td>En-All</td>
<td>4.9</td>
<td>9.00</td>
<td>24.2</td>
<td>21.9</td>
<td>15.1</td>
<td>27.9</td>
<td>24.1</td>
<td>33.3</td>
</tr>
<tr>
<td>En-All w/ f.t. on related clusters</td>
<td>7.9</td>
<td>13.9</td>
<td>21.0</td>
<td>26.2</td>
<td>16.7</td>
<td>30.4</td>
<td>27.1</td>
<td>35.4</td>
</tr>
<tr>
<td>En-All w/ f.t. on random groups</td>
<td>7.0</td>
<td>13.1</td>
<td>23.1</td>
<td>24.7</td>
<td>-</td>
<td>-</td>
<td>27.6</td>
<td>35.2</td>
</tr>
<tr>
<td>Load En-All w/ f.t. on closest</td>
<td>7.8</td>
<td>15.2</td>
<td>28.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

We found that multilingual training is more useful for the encoder.

We proposed a purely data-driven way to identify related languages.

Our experiments can serve as analysis tools for future research.