On a Benefit of Masked Language Modeling: Robustness to Simplicity Bias

Ting-Rui Chiang tingruic@usc.edu

What we know about pretrained models

- Require less data when fine-tuning
- Smoother loss surface [1]
- Lower intrinsic dimension [2]
- More robust to spurious (unreliable) features [3,4]

[1] Yaru Hao, Li Dong, Furu Wei, and Ke Xu. Visualizing and understanding the effectiveness of BERT

[2] Armen Aghajanyan, Luke Zettlemoyer, and Sona Gupta. Intrinsic dimensionality explains the effectiveness of language model fine-tuning.

[3] Lifu Tu, Garima Lalwani, Spandana Gella, and He He. An empirical study on robustness to spurious correlations using pre-trained language models.

[4] Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan, and Dawn Song. Pretrained transformers improve out-of-distribution robustness.

Why is a model unrobust?

Conjecture: May be due to the **pitfall of simplicity bias** [1].

- → **Simplicity bias:** deep models tend to rely on simple features instead of utilizing all the features [2].
- \rightarrow **Pitfall:** may not be robust.

[1] Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The pitfalls of simplicity bias in neural networks.[2] Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin Edelman, Tristan Yang, Boaz Barak, and Haofeng Zhang.

2019. Sgd on neural networks learns functions of increasing complexity.

For example, in the toxic text detection task [1,2]:

The presence (or not) of some group identifiers, e.g. women, black, etc. **Single dimension**

The *semantic* encoded by the tokens in the sentence. Much higher dimension

[1] Lucas Dix unintended b [2] Xuhui Zhc

Problem: Those spurious features are so tempting!

ting

nated

debiasing for toxic language detection.

Effect: Due to the simplicity bias, the model relies more on II, and so relies more on X_2 .

Theorem 1: II is as informative as X_1 (at least)

Theorem 2: Π is as easy as X_1 (at least)

Effect: The model relies more on Π , and so relies more on X_2 .

Experimental Settings

- To verify that modeling $P(X_1|X_2)$ makes models more robust.
- Pretrain two models with two masking policies:
 - Unmask spurious: Remove masks over the spurious features.
 - Unmask random: Remove some masks at random.
- Fine-tune the two models.
- Compare the performance on *out-of-distribution* data.
 - (the spurious features are not useful)
- Two tasks
 - NER: don't just memorize the name entities.
 - Hate speech detection: don't rely on the group identifiers.

Results

	NER		Hate Speech Detection					
Mask Policy	Origin	Unseen	All (12893)			NOI (602)		
	F1 ↑	F1 ↑	A	Accuracy \uparrow	$F1\uparrow$	4	Accuracy \uparrow	$FPR\downarrow$
scratch	61.5 0.5	207		020.	002.4		710	162
vanilla	74.2 0.4	Modeling the spurious token performs better on OOD.						
unmask random	72.7 0.6	56.5 0.8		83.3 1.1	78.9 1.1		75.8 0.9	25.7 2.3
unmask spurious	72.9 0.5	53.2 0.8		84.1 0.7	79.8 0.6		73.7 1.0	32.5 2.1
remove spurious	Similar p	performance	ce o	on ID.			77.3 0.6	21.7 2.0

Modeling the spurious token indeed improves the robustness.

Conclusion

- Propose the hypothesis why MLM is useful
 - Theoretically: prove that MLM can extract simple features from the robust feature.
 - Empirically: show that modeling the spurious features make models more robust.

Q&A

Ting-Rui Chiang https://ctinray.github.io/

Alert: Math Ahead!

Graphical Model

Assumption 1: from *X*, we can extract $X_{I'}$ X_2 .

Assumption 2: X_I can predict *Y* with high accuracy < 100%.

Assumption 3: There is a deterministic mapping from X_2 to Y.

Graphical Model


```
Assumption 1: from X, we can extract X_{I'}, X_2.
```

Assumption 2: X_1 can predict *Y* with high accuracy < 100%.

Assumption 3: There is a deterministic mapping from X_2 to Y.

Graphical Model


```
Assumption 1: from X, we can extract X_{l'}, X_{2}.
```

Assumption 2: X_I can predict Y with high accuracy < 100%.

Assumption 3: There is a deterministic mapping from X_2 to Y.

 $I(X_1; X_2) = I(\Pi; X_1)$

 $P(| X_2) \in \arg \max_{f} I(f(X_1); X_1)$

discrete

Theorem 1

 $\mathbf{\Pi} := \mathbf{P}(X_1 | X_2)$

Lemma 1:

$$I(X_1; X_2) = I(\Pi; X_1)$$

Theorem 1:

$$I(\Pi; Y) \ge I(X_{I}; Y)$$

$\boldsymbol{\Pi}$ is informative

Theorem 2

$$\boldsymbol{\Pi} := \mathrm{P}(X_1 | X_2)$$

Theorem 2:

Learning from Π

- Converges as fast as from X_1
- Converges to a solution as good as the optimal solution with X₁
- The model is linear

Theorem 2: Formal Results

- Both $\tilde{h}_{X_1}^{(n)}$ and $\tilde{h}_{\Pi}^{(n)}$ converge in $O\left(\frac{1}{n}\right)$
- When $n \to \infty$, the loss of $\tilde{h}_{\Pi}^{(n)}$ is less than $\tilde{h}_{X_1}^{(n)}$.

Learning from Π is easy

Theorem 2: Outline of the Proof

• Given $(x_1^{(1)}, y^{(1)}), (x_1^{(2)}, y^{(2)}), \cdots, (x_1^{(n)}, y^{(n)})$

$$\tilde{h}_{X_1}^{(n)}(Y=1|X_1=1) = \frac{\sum_i^n \mathbb{1}[x_1^{(i)}=1]\mathbb{1}[y^{(i)}=1]}{\sum_i^n \mathbb{1}[x_1^{(i)}=1]}$$

• Given $(\pi^{(1)}, y^{(1)}), (\pi^{(2)}, y^{(2)}), \dots, [\pi^{(n)}, y^{(n)})$ $\tilde{h}_{\Pi}^{(n)}(Y = 1 | X_1 = 1) = \frac{\sum_{i=1}^{n} \pi^{(i)}(X_1 = 1) \mathbb{1}[y^{(i)} = 1]}{\sum_{i=1}^{n} \pi^{(i)}(X_1 = 1)}$

 $\tilde{h}_{\Pi}^{(n)}(Y=1|\Pi) = \tilde{h}_{\Pi}^{(n)}(Y=1|X_1=0)\Pi(X_1=0) + \tilde{h}_{\Pi}^{(n)}(Y=1|X_1=1)\Pi(X_1=1)$

Alert Lifted