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What we know about pretrained models

Require less data when fine-tuning

Smoother loss surface [1]

Lower intrinsic dimension [2]

More robust to spurious (unreliable) features [3,4]
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Why is a model unrobust?

Conjecture: May be due to the pitfall of simplicity bias [1].

— Simplicity bias: deep models tend to rely on simple features
instead of utilizing all the features [2].
— Pitfall: may not be robust.

[1] Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The pitfalls of simplicity bias

in neural networks.
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Simplicity bias
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Simple but spurious features Complex but robust features

For example, in the toxic text detection task [1,2]:

The presence (or not) of some group The semantic encoded by the tokens
identifiers, e.g. women, black, etc. in the sentence.
Single dimension Much higher dimension
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How can the problem be alleviated?

Data Point X
‘ / 
Spurious features: token X, Robust features: context X,

What if we extract a feature II = f( X, ) such that

1. IIis as useful as X,
11

2. Learning from Il is as easy as X,

Effect: Due to the simplicity bias, the model relies more on II, and so relies more on X,



Theory in this work: MLM extracts II
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Theorem 1: Il is as informative as X, (tleasy Theorem 2: Il is as easy as X, (tles)

Effect: The model relies more on II, and so relies more on X,



Experimental Settings

e To verify that modeling P(X,|X,) makes models more robust.
e Pretrain two models with two masking policies:
o Unmask spurious: Remove masks over the spurious features.
o Unmask random: Remove some masks at random.
e Fine-tune the two models.
e Compare the performance on out-of-distribution data.
o (the spurious features are not useful)
e Two tasks
o NER: don’t just memorize the name entities.
o Hate speech detection: don’t rely on the group identifiers.



Results

NER Hate Speech Detection

Mask Policy Origin  Unseen All (12893) NOI (602)

F1 71 F1 1t | Accuracyt F11 | AccuracytT FPR|
scratch 61.505 12°7~- | 02 0O .. on2 .. | A Q . ANE 2 - a
el 749 04 Modeling the spurious token performs better on OOD.
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unmask spurious || 72.9 05| [53.2 03 84.1 0.7 79.8 0.6 13.7 10 32.5 21
remove spurious | .. . L L T 77.3 06 217 20

Similar performance on ID.

Modeling the spurious token indeed improves the robustness.




Conclusion

e Propose the hypothesis why MLM is useful
o Theoretically: prove that MLM can extract simple features from the robust
feature.
o Empirically: show that modeling the spurious features make models more
robust.
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Alert: Math Ahead!



My theory: MLM makes models more robust to lexical bias

Data Point X
‘ / 
Simple but spurious features X, Complex but robust features X,

Assumption 1: from X,
we can extract X, X,.

Assumption 2: X, can predict ¥ with Assumption 3: There is a
high accuracy < 100%. deterministic mapping from X, to ¥.




Graphical Model

Assumption 1: from X, we can
extract X » X,

Assumption 2: X, can predict ¥ with
high accuracy < 100%.

Assumption 3: There is a
deterministic mapping from X to Y.



Graphical Model

Assumption 1: from X, we can
extract X p XZ.

Assumption 2: X, can predict ¥ with
high accuracy < 100%.

Assumption 3: There is a
deterministic mapping from X, to Y.



Graphical Model

Assumption 2: X, can predict ¥ with
high accuracy < 100%.



Lemma

discrete

i RN,

II:=P(X | X)

|

discrete

I(X,; X,) = 1(IT; X))



Theorem 1

Lemma 1:

° Theorem 1:

IALY) = I(X,; V)
I =P(X|X,)

II is informative



Theorem 2

I :=P(X,|X,)

Theorem 2:

a Q ° Learning from IT

Converges as fast as from X,
Converges to a solution as
good as the optimal solution
with X,

The model is linear



Theorem 2: Formal Results

7 (n 7 (7 . 1
e Both h&f and h(rf) converge in O (E)

e When n o, the loss of A1’ is less than 77()?1) .

Learning from II is easy



Theorem 2: Outline of the Proof
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